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Abstract
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1 Introduction

Full-information rational expectations (FIRE) require that forecast errors
be unpredictable from forecast revisions. The seminal work of Coibion and
Gorodnichenko (2015, CG hereafter) suggests testing this relationship by
first aggregating the forecasts across individuals and then estimating the
aggregated time series regression. In contrast, Bordalo, Gennaioli, Ma,
and Shleifer (2020, BGMS hereafter) recommend estimating the average
relationship by first running separate regressions for each individual and
then aggregating (i.e. taking the mean or median of the coefficients ob-
tained from the first step). While CG (2015) document the underreaction
of consensus forecasts to news relative to FIRE, BGMS (2020) find that
individual forecasters typically overreact. So there remains a puzzle about
whether forecasters overreact or underreact. Given that the expectations
formation process significantly affects macroeconomic dynamics and pol-
icy decisions (Mankiw and Reis, 2002; Sims, 2003; Woodford, 2003), a
careful examination of the magnitude of deviation from FIRE cannot be
overemphasized.

In this paper, we provide specific conditions under which both the CG
(2015)’s “average then estimate” approach and the BGMS (2020)’s “es-
timate then average” approach are unbiased. The CG’s approach yields
unbiased estimates when the underlying error terms are cross-sectionally
independent or when forecast revisions are cross-sectionally independent.
The BGMS’ approach gives unbiased estimates under cross-sectional in-
dependence of the error term in the regression of individual forecast errors
on individual forecast revisions. In more general settings, however, both
approaches suffer from severe biases. We borrow from and build on the
work of Pesaran (2006) to propose an augmented information rigidity test
that allows for cross-sectional and time series correlation. The idea is to
augment the regression of individual forecast errors on individual forecast
revisions by their cross-sectional averages.

The proposed estimators, labelled as common correlated effects (CCE)
mean group (by allowing for slope heterogeneity) or pooled (by assuming
slope homogeneity), have the correct size, satisfactory power for moder-
ately large N and T , and very small root mean squared errors, which are

2



comparable to those of the infeasible estimators. We apply the CCE-type
estimators to test for rationality in the Survey of Professional Forecasters,
and find overwhelming evidence that individual experts overreact to news
in their macroeconomic expectations.

Our work contributes to the panel data literature on aggregation and
pooling. See, for example, Baltagi, et al. (2000), Pesaran and Zhou (2018)
and Wang, et al. (2019) for general discussions on “to pool or not to
pool.” Bonham and Cohen (2001) further argue that, due to heterogeneous
individual forecasts and private-information bias, neither aggregation nor
pooling is a valid strategy in testing the rational expectations hypothesis
using survey data. We add to this literature by showing that the modified
BGMS approaches of “estimate then average” and “pool” are appropriate
by accounting for cross-sectional and time series correlations in a panel
data setting.

Our work is also closely related to the recent macroeconomics litera-
ture in information rigidity. CG (2015), Drager and Lamla (2017) and
Giacomini, et al. (2020) establish the presence of underreaction to news
in inflation forecasts from professionals, consumers, and market partici-
pants. On the other hand, Bürgi (2016) and Crowe (2010) illustrate that
the rigidity found at the aggregate level likely stems from the aggrega-
tion process. Messina, et al. (2015) show that the Greenbook forecasts
made by the Federal Reserve staff are over-responsive to new informa-
tion. Binder (2017) finds that both the low frequency and the rounding
in household surveys result in overestimation of information stickiness.
By matching a large database of individual macro forecaster data with
the universe of sizable natural disasters across 54 countries, Baker, et al.
(2020) document that information rigidity declines significantly following
large shocks. BGMS (2020) present supporting evidence for the lack of
information stickiness at the individual forecaster level. We add to this
literature by proposing an augmented information rigidity test and docu-
menting pervasive overreaction to news in professional’s forecasts.

The paper proceeds as follows. Section 2 presents the information
rigidity test and different estimators. Section 3 explores the small sample
performance of various estimators in Monte Carlo experiments. Section 4
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illustrates an empirical study in testing rationality in professional’s fore-
casts. Section 5 concludes. Additional simulation results and derivations
are relegated to the Appendices.

2 Models and Estimators

In this paper we consider the panel regression

yit = αi + βi xit + eit, i = 1, . . . , N ; t = 1, . . . , T. (1)

In the context of information rigidity testing, yit is agent i’s forecast error
at time t, defined as the difference between actual value and forecast,
and xit is the forecast revision. Under FIRE, agent i’s ex post forecast
error is unpredictable from ex ante forecast revision. If this correlation
is positive, upward revisions predict higher realizations compared to the
forecasts, implying that forecasters underreact to information relative to
FIRE. On the other hand, a negative correlation indicates overreaction.
The forecast efficiency test in equation (1) was first proposed in Nordhaus
(1987).

The error term in equation (1), eit, is correlated across individuals and
over time. The cross-sectional correlation in eit is driven by the common
factor ft:

eit = γi ft + ξit, (2)

and the factor loading γi measures the strength of error correlation. We
allow for time series correlations in both the common factor ft and in the
idiosyncratic errors ξit:

ft = ρ ft−1 + vt, (3)

and
ξit = λi ξi,t−1 + uit. (4)

Furthermore, we assume that the regressor xit in equation (1) is also
subject to both cross-sectional and time series correlations, as is quite
common in practice. Suppose that
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xit = τi ft + εit, (5)

and
εit = θi εi,t−1 + ηit. (6)

Remark 1. Our model specification follows from Pesaran (2006), and
nests other specifications used in the literature. For example, Driscoll
and Kraay (1998) adopt a model including equations (1)-(4) by assum-
ing a homogeneous slope coefficient (that is, βi = β) and cross-sectional
independence of xit. Gow, et al. (2010), on the other hand, specify the
model including equations (1)-(6) under two assumptions: (i) the slope
coefficients are the same, i.e. βi = β, and (ii) the factor loadings are the
same, i.e. γi = γ in equation (2) and τi = τ in equation (5).

As a consequence of (2) and (5), we can rewrite (1) as

yit = αi + (βiτi + γi) ft + βi εit + ξit, i = 1, . . . , N ; t = 1, . . . , T.

This makes explicit the role of the hidden factor ft.
Consider further the homogeneous case, where βi = β is common.

Then if we aggregate over the panels, we obtain

y·t =
N∑
i=1

αi + β x·t +
N∑
i=1

γi ft + ξ·t. (7)

So if we regress y·t on x·t (and a constant), there is a bias due to the
presence of ft. However, if ∑N

i=1 γi = 0 there is no bias. In such a case,
the “aggregate” regression gives an unbiased estimate of β. In contrast, an
Ordinary Least Squares (OLS) estimate based on pooling would regress yit
on a panel indicator and on xit; in this case we have omitted the presence
of γi ft, which generates bias. We will explore the asymptotic bias at the
end of this section and the small-sample bias in the next section.

Since both aggregate OLS and pooled OLS can potentially generate
biased estimates, it is important to consider alternative estimators that
appropriately handle the presence of common factors. In this paper we
consider the method of Pesaran (2006) to obtain the common correlated
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effects estimators, which are appropriate for handling both heterogeneous
slope (βi 6= β) and a homogeneous slope (βi = β). These estimators are
defined explicitly below.

We first set out the general notation, following Pesaran (2006): let dt
be theM -vector of observed common factors, for each time t = 1, 2, . . . , T ,
and let D = [d1,d2, . . . ,dT ]′ be a T ×M dimensional matrix. There are
also unobserved common factors, denoted ft. Let y = [y1,y2, . . . ,yT ]′ be
a T ×N matrix of the dependent variables, across time and panel. Slicing
this by panel, we have vectors of length T denoted yi for 1 ≤ i ≤ N . We
can average over the panel, obtaining Y, a T × 1 matrix (or vector). The
covariates are given by xt for t = 1, 2, . . . , T , which is a K × N matrix.
If we write the same over time, for each panel, we have a T ×K matrix
denoted Xi for the ith panel, 1 ≤ i ≤ N . If we average across the panels,
we obtain a K-vector (over time) denoted by xt. Assembling these into a
T ×K matrix, we have

X = [x1,x2, . . . ,xT ]′.

Then a T × (M+1+K) dimensional matrix is defined via H = [D,Y,X].
Regressing upon these quantities yields the projection matrix

M = IT −H
[
H′H

]−1
H′.

The CCE estimator of Pesaran (2006) is defined for each panel as follows:
for 1 ≤ i ≤ N ,

bi =
[
X′i M Xi

]−1
X′i M yi. (8)

The CCE is specialized to the CCE Mean Group (CCEMG) and CCE
Pooled (CCEP) estimators, using dt = 1, as this is the only observed
common factor in our model (1). Then the CCEMG estimator is defined
as the straight average of the CCEs:

bCCEMG = N−1
N∑
i=1

bi. (9)

In contrast, the CCEP estimator averages over panels before doing the
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regression, using dt = 1:

bCCEP =
[
N∑
i=1

X′i M Xi

]−1 N∑
i=1

X′i M yi. (10)

For comparison, we also construct the “infeasible” CCE estimator,
which includes the unknown factor ft in the regression of yit on xit; this
provides an upper bound to the efficiency of the CCE estimators. The
infeasible CCEMG is obtained by setting d′t = [1, f ′t ] instead of dt = 1;
this estimator will be denoted by bINF .1

We also consider the OLS estimator that excludes the factor ft. The
OLS estimator shows the extent of bias and size distortions that can occur
if the error cross-sectional dependence is present but ignored. Once we
account for an overall mean, we obtain

bOLS =
[
N∑
i=1

X′i P Xi

]−1 N∑
i=1

X′i P yi, (11)

where
P = IT −D [D′D]−1 D′.

When dt = 1, this is called the pooled OLS estimator, and is denoted via
bPOOL; this is the estimator studied in the work of BGMS (2020).

Note that (11) resembles the CCEP estimator, where we have failed
to first partial out the panel effects, only removing an overall mean. This
construction leads to the Mean Group (MG) estimator, which is obtained
by using P in place of M in (8), and then computing the CCEMG via
(9); the estimator is denoted by bMG. bMG is in spirit similar to BGMS
(2020)’s approach by first running separate regressions for each individual
and then aggregating. The only difference is that bMG takes the mean of
the coefficients obtained from the first step, while BGMS (2020) takes the
median.

Finally, the aggregated model corresponds to applying OLS to Y and
X:

bAGG =
[
X′P X

]−1
X′P y. (12)

1Similarly we can construct the infeasible CCEP estimator.
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This is the estimator proposed in CG (2015). Under the null hypothesis
of no information frictions, bAGG = 0, that is, the average forecast error
is unpredictable using information dated t or earlier. In the presence
of information rigidity, bAGG > 0. This predictability in average forecast
errors reflects the slow updating of information by some agents in Mankiw
and Reis (2002)’s sticky-information model or the gradual adjustment of
beliefs by all agents to new information in Sims (2003)’s noisy-information
model.

Next, we explore the asymptotic properties of these estimators. As
shown in Pesaran (2006), the CCEMG and CCEP estimators are unbiased
(as is the INF method). In contrast, the AGG, MG and POOL estimators
are biased, and it is possible to derive asymptotic bias expressions; see
Appendix A for derivations. We provide formulas that are conditional
on γi, τi, and θi. For short-hand, let σ2

f = Var[ft], σ2
i = Var[εi,t], and

σ2
· = Var[ε·t], where ε·t = ∑N

i=1 εit. For our derivations we assume that
each θi is deterministic. The asymptotic biases are

BiasAGG =
∑N
i=1 γi

∑N
i=1 τi σ

2
f(∑N

i=1 τi
)2
σ2
f + σ2

·

BiasMG = N−1
N∑
i=1

γiτi σ
2
f

τ 2
i σ

2
f + σ2

i

BiasPOOL =
∑N
i=1 γiτi σ

2
f∑N

i=1 τ
2
i σ

2
f +∑N

i=1 σ
2
i

.

For all three estimators their biases depend on the variance of the common
factor, σ2

f . In the regression of cross-sectionally correlated forecast errors
on forecast revisions, both MG and POOL estimators are biased. For the
AGG estimator we see that the bias is negligible if either ∑N

i=1 γi = 0 or∑N
i=1 τi = 0; in either case, the bias will be low if σ2

f is small relative to
σ2
· .
CG (2015) noted (in their Appendix A) that the AGG estimator is

downward biased; this results from the presence of noise in the public
information, leading to correlations between forecast revisions and the
error term in the aggregate time series regression (of average forecast
error on average forecast revision). Such results are explicable in terms of
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our framework: the particular state space structure in CG (2015) leads to
a negative bias – see our Appendix B for details.

If there is no alternative to using the AGG method (say, when indi-
vidual forecasts are not available), then it is desirable to reduce the bias.
One possible approach is to utilize a high-pass filter on the covariate {x·t}
so as to suppress the common factor and accentuate {ε·t}. (Such filtered
covariates can be viewed as instrumental variables that the researcher con-
structs empirically.) This is certainly possible to do when the time series
dynamics of {ft} and {ε·t} are known, and are somewhat distinct. This
will have the effect of lowering the signal-to-noise ratio σ2

f/σ
2
· , thereby

decreasing the magnitude of the bias in the AGG method.

3 Monte Carlo Study

We study the small-sample properties of the aforementioned estimators
via Monte Carlo simulations. Our data generating process (DGP) is as
follows. We simulate the data for i = 1, . . . , N and t = 1, . . . , T with
stationary initializations. The individual fixed effect αi is drawn from a
normal distribution as αi ∼ i.i.d. N(1, 1).

For the parameter of interest, βi, we consider two cases: (i) homo-
geneous slope βi = β and (ii) heterogeneous slope βi = β + wi, wi ∼
i.i.d. N(0, 0.04). The null specification is β = 0, and under the alternative
β = .05. In the homogeneous case all the panel slopes βi are identical, so
the group slope β is well-defined; in the heterogeneous case all the panel
slopes βi are different random variables, so the group slope is defined to
be their common mean β.

For the factor loadings γi and τi, we consider strong cross-sectional
dependence γi ∼ i.i.d. N(1, 0.2) and τi ∼ i.i.d. N(1, 0.2), and weak cross-
sectional dependence γi ∼ i.i.d. N(0.5, 0.04) and τi ∼ i.i.d. N(0.5, 0.04).
Also we allow the x variables to be independent (τi = 0). If we wish to
impose the constraint that ∑i γi = 0, we take any given set of γi and
subtract off their sample mean; this results in a negative cross-sectional
correlation for the y variables.

The three parameters that govern time series correlations are drawn in-
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dependently as ρ = 0.5, λi ∼ i.i.d. U [0.05, 0.95] and θi ∼ i.i.d. U [0.05, 0.95].
The error terms are specified as vt ∼ i.i.d. N(0, 1 − ρ2), uit ∼ i.i.d.
N(0, 1− λ2

i ) and ηit ∼ i.i.d. N(0, 1− θ2
i ).

We explore the properties of these estimators under several different
scenarios: there are 12 DGPs based on the assumption of homogeneous
slope.

• DGP 1: strong cross-sectional dependence in y only (γi ∼ i.i.d.
N(1, 0.2)), but x are cross-sectionally independent (τi = 0)

• DGP 2: strong cross-sectional dependence in y (γi ∼ i.i.d. N(1, 0.2))
and weak cross-sectional dependence in x (τi ∼ i.i.d. N(0.5, 0.04))

• DGP 3: strong cross-sectional dependence in both y (γi ∼ i.i.d.
N(1, 0.2)) and x (τi ∼ i.i.d. N(1, 0.2))

• DGP 4: weak cross-sectional dependence in y only (γi ∼ i.i.d.
N(0.5, 0.04)), but x are cross-sectionally independent (τi = 0)

• DGP 5: weak cross-sectional dependence in both y (γi ∼ i.i.d.
N(0.5, 0.04)) and x (τi ∼ i.i.d. N(0.5, 0.04))

• DGP 6: weak cross-sectional dependence in y only (γi ∼ i.i.d.
N(0.5, 0.04)), and strong cross-sectional dependence in x (τi ∼ i.i.d.
N(1, 0.2))

• DGP 7: zero bias constraint on y with high variance loadings (γi =
δi − N−1∑N

j=1 δj, δi ∼ i.i.d. N(1, 0.2)), but x are cross-sectionally
independent (τi = 0)

• DGP 8: zero bias constraint on y with high variance loadings (γi =
δi − N−1∑N

j=1 δj, δi ∼ i.i.d. N(1, 0.2)), and weak cross-sectional
dependence in x (τi ∼ i.i.d. N(0.5, 0.04))

• DGP 9: zero bias constraint on y with high variance loadings (γi =
δi − N−1∑N

j=1 δj, δi ∼ i.i.d. N(1, 0.2)), and strong cross-sectional
dependence in x (τi ∼ i.i.d. N(1, 0.2))
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• DGP 10: zero bias constraint on y with low variance loadings (γi =
δi−N−1∑N

j=1 δj, δi ∼ i.i.d. N(0.5, 0.04)), but x are cross-sectionally
independent (τi = 0)

• DGP 11: zero bias constraint on y with low variance loadings (γi =
δi −N−1∑N

j=1 δj, δi ∼ i.i.d. N(0.5, 0.04)), and weak cross-sectional
dependence in x (τi ∼ i.i.d. N(0.5, 0.04))

• DGP 12: zero bias constraint on y with low variance loadings (γi =
δi−N−1∑N

j=1 δj, δi ∼ i.i.d. N(0.5, 0.04)), and strong cross-sectional
dependence in x (τi ∼ i.i.d. N(1, 0.2))

Each experiment was replicated 50,000 times, first for N = 50, T =
100, and secondly for N = 100, T = 50. The simulation results are
summarized in Tables 1 - 4, which provide estimates of bias, root mean
squared error (RMSE), size in testing the hypothesis β = 0, and power
assuming that β = 0.05.

Next, we compare the performance of six different estimators: CCEMG,
INF, MG, CCEP, POOL, and AGG. CCEMG is the common correlated
effects mean group estimator defined in equation (9), INF is the infea-
sible CCEMG estimator obtained by assuming that the common factor
is known, and MG is the mean group estimator corresponding to first
running separate regressions for each individual by ignoring the common
factor, and then taking the mean of the coefficients obtained from the first
step. CCEP is the common correlated effects pooled estimator defined in
equation (10). POOL is the pooled OLS estimator without controlling for
the panel structure and cross-sectional correlation. AGG is the OLS es-
timator from the aggregated time series regression as defined in equation
(12).

Consider the bias and RMSE first. As shown in Tables 1 and 3, both
MG and POOL estimators are substantially biased in the presence of
cross-sectional correlation in the error term and individual-specific regres-
sors (i.e. for DGPs 2-3 and 5-6). In contrast, the bias and RMSE of
the CCE type estimators, including both CCEMG and CCEP, are very
small and comparable to those of the infeasible estimator. For the ho-
mogeneous slope experiments, the CCEP is expected to be more efficient
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Table 1: Bias and RMSE of estimators with homogeneous slope: N = 50,
T = 100

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Bias -0.0002 -0.0001 -0.0002 -0.0001 0.0025 -0.0002
RMSE 0.0205 0.0295 0.0196 0.0283 0.9601 0.0205

DGP 2 Bias -0.0002 0.3853 -0.0001 0.3915 1.8586 -0.0001
RMSE 0.0204 0.3908 0.0196 0.3971 1.8661 0.0204

DGP 3 Bias 0.0001 0.4514 0.0001 0.4557 0.9849 0.0001
RMSE 0.0203 0.4548 0.0195 0.4587 0.9891 0.0203

DGP 4 Bias 0.0000 -0.0000 -0.0000 -0.0001 -0.0029 0.0000
RMSE 0.0204 0.0226 0.0196 0.0218 0.4930 0.0204

DGP 5 Bias 0.0002 0.1931 0.0001 0.1962 0.9298 0.0002
RMSE 0.0205 0.1964 0.0197 0.1995 0.9337 0.0206

DGP 6 Bias -0.0002 0.2256 -0.0002 0.2278 0.4923 -0.0002
RMSE 0.0204 0.2275 0.0196 0.2294 0.4945 0.0205

DGP 7 Bias -0.0001 -0.0001 -0.0001 -0.0001 -0.0011 -0.0000
RMSE 0.0222 0.0219 0.0214 0.0212 0.1372 0.0204

DGP 8 Bias 0.0001 0.0001 0.0001 0.0000 0.0001 0.0002
RMSE 0.0205 0.0199 0.0197 0.0206 0.0357 0.0204

DGP 9 Bias 0.0001 0.0000 0.0000 -0.0000 0.0001 0.0000
RMSE 0.0204 0.0162 0.0196 0.0185 0.0184 0.0204

DGP 10 Bias 0.0002 0.0002 0.0002 0.0002 0.0005 0.0002
RMSE 0.0208 0.0205 0.0200 0.0198 0.1369 0.0205

DGP 11 Bias -0.0001 -0.0001 -0.0001 -0.0001 0.0001 -0.0001
RMSE 0.0204 0.0180 0.0196 0.0177 0.0357 0.0204

DGP 12 Bias 0.0001 -0.0000 0.0001 -0.0000 -0.0000 0.0001
RMSE 0.0203 0.0145 0.0196 0.0140 0.0183 0.0204

Note: This table shows the bias and root mean squared error (RMSE) based on 50, 000
replications for the homogeneous case. CCEMG is the common correlated effects mean
group estimator defined in equation (9), INF is the infeasible CCEMG estimator by
assuming that the common factor is known, and MG is the mean group estimator by
first running separate regressions for each individual by ignoring the common factor,
and then taking the mean of the coefficients obtained from the first step. CCEP is
the common correlated effects pooled estimator defined in equation (10). POOL is the
pooled OLS estimator without controlling for the panel structure and cross-sectional
correlation. AGG is the OLS estimator from the aggregated time series regression as
defined in equation (12).
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Table 2: Size and power of estimators with homogeneous slope: N = 50,
T = 100

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Size 0.0569 0.0552 0.0571 0.0549 0.1386 0.0562
Power 0.6972 0.4162 0.7272 0.4375 0.1381 0.6979

DGP 2 Size 0.0571 1.0000 0.0580 1.0000 1.0000 0.0576
Power 0.6999 1.0000 0.7301 1.0000 1.0000 0.6987

DGP 3 Size 0.0574 1.0000 0.0563 1.0000 1.0000 0.0561
Power 0.6998 1.0000 0.7315 1.0000 1.0000 0.6979

DGP 4 Size 0.0571 0.0543 0.0572 0.0539 0.1357 0.0574
Power 0.6956 0.6027 0.7254 0.6309 0.1369 0.6954

DGP 5 Size 0.0581 1.0000 0.0586 1.0000 1.0000 0.0588
Power 0.6986 1.0000 0.7297 1.0000 1.0000 0.6969

DGP 6 Size 0.0568 1.0000 0.0583 1.0000 1.0000 0.0573
Power 0.6986 1.0000 0.7283 1.0000 1.0000 0.6958

DGP 7 Size 0.0559 0.0544 0.0575 0.0549 0.1508 0.0566
Power 0.6275 0.6344 0.6598 0.6633 0.1773 0.6975

DGP 8 Size 0.0574 0.0039 0.0570 0.0041 0.1364 0.0575
Power 0.6938 0.3014 0.7239 0.2899 0.4680 0.6968

DGP 9 Size 0.0560 0.0003 0.0573 0.0006 0.1351 0.0552
Power 0.7027 0.2199 0.7328 0.2119 0.8847 0.7001

DGP 10 Size 0.0589 0.0561 0.0583 0.0558 0.1496 0.0577
Power 0.6846 0.6886 0.7157 0.7170 0.1762 0.6967

DGP 11 Size 0.0564 0.0248 0.0571 0.0258 0.1370 0.0569
Power 0.6994 0.6860 0.7305 0.6948 0.4676 0.6961

DGP 12 Size 0.0571 0.0115 0.0572 0.0105 0.1343 0.0575
Power 0.6995 0.7942 0.7287 0.8085 0.8855 0.6949

Note: This table reports the proportion of rejections of the null hypothesis that β = 0,
when β = 0 (for size of various estimators) or β = 0.05 (for power of various estimators),
based on 50, 000 replications for the homogeneous case. For the description of different
estimators, see the note to Table 1.

than the CCEMG, and this is corroborated by the results in these ta-
bles. Indeed, the CCEP estimator even dominates the infeasible estima-
tor. As expected, the AGG estimator is unbiased when the error terms are
cross-sectionally independent (i.e., ∑N

i=1 γi = 0 for DGPs 7-12) or when
the individual-specific regressors xit are cross-sectionally independent for
DGPs 1 and 4. In more general cases (e.g. when forecasters have access
to the same public information with noise), however, the AGG estimator
exhibits large biases.

Using the asymptotic bias formulas of Section 2, it is possible to obtain
explicit values in the case of the MG and POOL estimators. This is
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Table 3: Bias and RMSE of estimators with homogeneous slope: N = 100,
T = 50

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Bias 0.0001 -0.0000 0.0001 0.0000 -0.0031 0.0001
RMSE 0.0206 0.0300 0.0191 0.0280 1.9104 0.0206

DGP 2 Bias -0.0000 0.3969 0.0000 0.3959 1.9283 -0.0000
RMSE 0.0206 0.4051 0.0191 0.4045 1.9331 0.0207

DGP 3 Bias 0.0000 0.4580 0.0000 0.4558 0.9924 0.0000
RMSE 0.0205 0.4625 0.0191 0.4596 0.9947 0.0206

DGP 4 Bias -0.0000 -0.0001 -0.0000 -0.0001 -0.0006 -0.0000
RMSE 0.0206 0.0230 0.0191 0.0214 0.9693 0.0207

DGP 5 Bias 0.0001 0.1987 0.0000 0.1981 0.9642 0.0001
RMSE 0.0205 0.2033 0.0190 0.2029 0.9670 0.0206

DGP 6 Bias 0.0002 0.2293 0.0001 0.2281 0.4963 0.0001
RMSE 0.0206 0.2318 0.0191 0.2302 0.4976 0.0207

DGP 7 Bias 0.0001 0.0000 0.0000 -0.0000 -0.0001 0.0001
RMSE 0.0226 0.0223 0.0209 0.0208 0.1900 0.0207

DGP 8 Bias -0.0000 -0.0000 0.0000 0.0001 0.0002 0.0000
RMSE 0.0206 0.0194 0.0192 0.0191 0.0358 0.0207

DGP 9 Bias -0.0002 -0.0001 -0.0002 -0.0001 -0.0000 -0.0001
RMSE 0.0205 0.0155 0.0191 0.0159 0.0182 0.0206

DGP 10 Bias 0.0001 0.0001 0.0001 0.0001 -0.0003 0.0001
RMSE 0.0209 0.0206 0.0193 0.0192 0.1894 0.0206

DGP 11 Bias 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002
RMSE 0.0206 0.0178 0.0191 0.0170 0.0360 0.0207

DGP 12 Bias 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000
RMSE 0.0206 0.0143 0.0191 0.0132 0.0181 0.0207

Note: This table shows the bias and root mean squared error (RMSE) based on 50, 000
replications for the homogeneous case. For the description of different estimators, see
the note to Table 1.

because σ2
f = 1 and σ2

i = 1 for each i. All biases are zero for DGPs
7 through 12, and are also zero for DGPs 1 and 4. Both POOL and
MG have asymptotic bias of 2/5 for DGP 2, and 1/2 for DGP 3; for
DGPs 5 and 6 both estimators have biases of 1/5 and 1/4 respectively.
The quantity σ2

· cannot be exactly determined in our simulation setup
because we randomly generated each θi. But if we assume that σ2

· /N
2 is

much smaller than one, then the asymptotic bias of the AGG estimator is
approximately 2 for DGP 2, 1 for DGPs 3 and 5, and 1/2 for DGP 6. These
asymptotic bias results explain the observed biases in our simulations.

Turning to the size and power reported in Tables 2 and 4, the test
results for both CCEMG and CCEP estimators have the correct size for
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Table 4: Size and power of estimators with homogeneous slope: N = 100,
T = 50

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Size 0.0535 0.0527 0.0535 0.0520 0.1328 0.0528
Power 0.6866 0.4030 0.7489 0.4466 0.1352 0.6828

DGP 2 Size 0.0521 1.0000 0.0543 1.0000 1.0000 0.0527
Power 0.6838 1.0000 0.7465 1.0000 1.0000 0.6803

DGP 3 Size 0.0524 1.0000 0.0527 1.0000 1.0000 0.0533
Power 0.6877 1.0000 0.7477 1.0000 1.0000 0.6818

DGP 4 Size 0.0536 0.0519 0.0529 0.0517 0.1329 0.0533
Power 0.6842 0.5909 0.7470 0.6451 0.1328 0.6813

DGP 5 Size 0.0526 1.0000 0.0516 1.0000 1.0000 0.0518
Power 0.6889 1.0000 0.7482 1.0000 1.0000 0.6836

DGP 6 Size 0.0531 1.0000 0.0538 1.0000 1.0000 0.0531
Power 0.6882 1.0000 0.7466 1.0000 1.0000 0.6829

DGP 7 Size 0.0540 0.0519 0.0543 0.0521 0.1414 0.0525
Power 0.6114 0.6204 0.6747 0.6768 0.1545 0.6808

DGP 8 Size 0.0525 0.0100 0.0531 0.0097 0.1335 0.0531
Power 0.6845 0.4746 0.7454 0.4860 0.4639 0.6831

DGP 9 Size 0.0521 0.0016 0.0541 0.0025 0.1320 0.0520
Power 0.6860 0.4976 0.7448 0.4901 0.8838 0.6801

DGP 10 Size 0.0514 0.0517 0.0536 0.0528 0.1406 0.0520
Power 0.6738 0.6816 0.7362 0.7357 0.1539 0.6830

DGP 11 Size 0.0539 0.0328 0.0544 0.0333 0.1333 0.0544
Power 0.6874 0.7435 0.7471 0.7779 0.4659 0.6830

DGP 12 Size 0.0533 0.0217 0.0528 0.0186 0.1335 0.0532
Power 0.6863 0.8764 0.7477 0.9132 0.8824 0.6814

Note: This table reports the proportion of rejections of the null hypothesis that β = 0,
when β = 0 (for size of various estimators) or β = 0.05 (for power of various estimators),
based on 50, 000 replications for the homogeneous case. For the description of different
estimators, see the note to Table 1.

N, T ≥ 50. Perhaps not surprisingly, given the homogeneous nature of
the alternative, the CCEP estimator is more powerful than the CCEMG
estimator, particularly for relatively large N . In contrast, both MG and
POOL estimators are severely oversized in the presence of cross-sectional
correlation (i.e. for DGPs 2-3 and 5-6), but are correctly sized when the
individual-specific regressors are cross-sectionally independent. Finally,
the AGG estimator displays size distortions in all cases. Upon further
investigation, we find that the variance estimator for the AGG method
is too small, leading to an inflated value of the studentized statistic (and
hence too many type I errors). These problems seem to arise because
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the regression errors have positive serial dependence, and the OLS-based
variance estimators do not take this into account.

The simulations based on heterogeneous slopes give almost the same
results. To save space, they are reported in Appendix C. Overall, both
CCEMG and CCEP estimators perform very well: they have the correct
size, satisfactory power for moderately large N and T , and very small
root mean squared errors, which are comparable to those of the infeasible
estimators. By contrast, the other three estimators, including MG, POOL,
and AGG, display large biases and suffer from severe size distortions in
the presence of cross-sectional correlation.

4 Rationality in Macroeconomic Expecta-
tions

We use the individual and consensus forecasts from the Survey of Pro-
fessional Forecasters (SPF) currently run by the Federal Reserve Bank of
Philadelphia covering 1968.Q4 through 2016.Q42. To facilitate the com-
parison to BGMS (2020), we use an annual forecast horizon. For GDP
and inflation, we transform the level of these variables into implied growth
rates from quarter t− 1 to quarter t+ 3. For variables such as unemploy-
ment rate and interest rates, we study the level in quarter t + 3. We
compute consensus forecasts as the mean of individual forecasts.

The original data set has 333 agents and 193 quarters. About 90%
of the data is missing, so we use the following techniques to refine the
data. First, we split the data into two distinct time spans: (1) 1968.Q4
through 1990.Q4 and (2) 1992.Q1 through 2016.Q4. The American Statis-
tical Association and the National Bureau of Economic Research initiated
the survey in 1968Q4. Due to a rapidly declining participation rate in
the late 1980s, the Federal Reserve Bank of Philadelphia took over the
survey in 1990 with a new infusion of forecasters. Our decision for sample
split is driven by this structural change in the survey. Also for this first

2Federal Reserve Bank of Philadelphia, Survey of Professional Forecasters:
1968.Q4 - 2016.Q4 (accessed February 9, 2021), https://www.philadelphiafed.org/
surveys-and-data/real-time-data-research/individual-forecasts
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span, we restrict to the six variables: nominal GDP, real GDP, GDP price
index, industrial production, housing starts, and unemployment. For the
second span we retain all 15 pairs of variables. In addition to the six
variables above, we also consider forecasts for consumer price index, real
consumption, real nonresidential investment, real residential investment,
real federal government consumption, real state and local government con-
sumption, three-month Treasury rate, ten-year Treasury rate, and AAA
corporate bond rate.

Further, within each of these two data subsets we consider those agents
who have responded at least 20% of the time, i.e. the proportion of missing
values for such agents is at most 80% across all times and variables. This
gives N = 38 agents and T = 89 quarters for the first subset and N = 36
agents and T = 100 quarters for the second subset, which are roughly in
the range of sample sizes for our first simulation.

As a first step, we replace missing values using the following technique.
For each variable, let y denote a vector corresponding to the T ×N data
matrix, with all times for the first agent followed by all times for the second
agent, etc. We also construct dummy regressors consisting of the means
across the agents (for each time), and the means across time (for each
agent). For this second covariate, we subtract the grand mean (average
over agents and time) for the time means. Let this regressor matrix be
denoted X. Note that in constructing X, which is NT×2-dimensional, we
must handle missing values to construct the panel means and time means:
we simply omit any missing values to compute these averages, and if all
the inputs happen to be missing, then that particular average is replaced
by the grand mean.

Next, consider a linear model y = Xβ + ε, where β is a bivariate
vector and ε are the errors. Such a model is considered in Lahiri, et al.
(2021). Let J and K be selection matrices such that Jy is observed and
Ky consists of all the missing values in y. Then

Jy = JXβ + Jε

is an implied regression equation where, all the dependent variables are
observed. So we can estimate β on the basis of this fully observed regres-
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sion, via
β̂ = [(JX)′(JX)]−1(JX)′Jy.

This estimate can be computed because there are no missing values in-
volved in JX or Jy. To obtain imputations for Ky we use the predictors

K̂y = Kŷ = KXβ̂ = KX[(JX)′(JX)]−1(JX)′Jy.

We apply this technique to impute missing values to the SPF dataset.
Individual forecast errors (yit) are calculated as actual values minus in-
dividual forecasts. We use the first-released actual values in real time
from the Real Time Data Set for Macroeconomists provided by the Fed-
eral Reserve Bank of Philadelphia3. Individual forecast revisions (xit) are
computed as individual i’s forecasts made in quarter t minus her forecasts
made in quarter t − 1. We obtain consensus forecast errors and forecast
revisions as the average of the corresponding individual forecast errors
and revisions.

Columns 1-5 in Table 5 report the coefficient estimates from the regres-
sion of forecast errors on forecast revisions and the associated p-values for
the t-statistics for the CCEMG, MG, CCEP, POOL, and AGG estimators.
The last two columns report the p-values from testing the null hypothe-
sis that slopes are homogeneous (SL) and that there is no cross-sectional
dependence in the error term (CD).

The SL test is from Pesaran and Yamagata (2008)’s adjusted version
of the slope homogeneity test, which is robust to non-normal errors in
large panels. For about half of the cases, the SL test rejects the null
of slope homogeneity and supports mean group estimators rather than
pooled estimators. Pesaran (2021)’s CD test is based on the average of
pair-wise correlation coefficients of the OLS residuals from the individual
regressions in the panel. The CD test results unanimously reject the
independence null hypothesis and point to the widespread cross-sectional
correlation in the error terms of information rigidity regressions.

3Federal Reserve Bank of Philadelphia, Real-Time Data Set for Macroe-
conomists: 1968.Q4 - 2016.Q4 (accessed February 9, 2021), https:
//www.philadelphiafed.org/surveys-and-data/real-time-data-research/
real-time-data-set-for-macroeconomists
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Table 5: Test for information rigidity

Variable CCEMG MG CCEP POOL AGG SL CD
Panel A: 1968.Q4-1990.Q4 (N = 38, T = 89)

NGDP -0.41 (0.00) 0.21 (0.00) -0.42 (0.00) 0.14 (0.01) 0.62 (0.02) 0.71 0.00
RGDP -0.39 (0.00) 0.11 (0.01) -0.37 (0.00) 0.02 (0.77) 0.42 (0.14) 0.18 0.00
PGDP -0.44 (0.00) 0.81 (0.00) -0.38 (0.00) 0.66 (0.00) 1.53 (0.00) 0.00 0.00
INDP -0.41 (0.00) 0.16 (0.00) -0.41 (0.00) 0.14 (0.00) 0.65 (0.06) 0.05 0.00
HOUS -0.38 (0.00) 0.19 (0.00) -0.41 (0.00) 0.17 (0.00) 0.51 (0.11) 0.04 0.00
UNEM -0.34 (0.00) 0.30 (0.00) -0.34 (0.00) 0.30 (0.00) 0.52 (0.06) 0.00 0.00

Panel B: 1992.Q1-2016.Q4 (N = 36, T = 100)
NGDP -0.46 (0.00) 0.21 (0.00) -0.50 (0.00) 0.13 (0.04) 0.61 (0.02) 0.00 0.00
RGDP -0.44 (0.00) 0.12 (0.00) -0.46 (0.00) 0.08 (0.08) 0.32 (0.23) 0.71 0.00
PGDP -0.51 (0.00) -0.21 (0.00) -0.53 (0.00) -0.25 (0.00) 0.23 (0.41) 0.18 0.00
CPI -0.55 (0.00) -0.11 (0.00) -0.53 (0.00) -0.16 (0.00) 0.22 (0.48) 0.98 0.00

RCON -0.48 (0.00) 0.06 (0.12) -0.48 (0.00) -0.02 (0.74) 0.38 (0.19) 0.61 0.00
INDP -0.52 (0.00) 0.29 (0.00) -0.50 (0.00) 0.21 (0.00) 0.75 (0.05) 0.71 0.00
RNRE -0.50 (0.00) 0.53 (0.00) -0.52 (0.00) 0.43 (0.00) 1.19 (0.00) 0.00 0.00
RRES -0.37 (0.00) 0.64 (0.00) -0.39 (0.00) 0.46 (0.00) 1.75 (0.00) 0.00 0.00
RFGC -0.56 (0.00) -0.50 (0.00) -0.56 (0.00) -0.50 (0.00) -0.40 (0.22) 0.13 0.00
RGSL -0.50 (0.00) -0.09 (0.19) -0.53 (0.00) -0.25 (0.00) 0.80 (0.03) 0.00 0.00
HOUS -0.45 (0.00) -0.10 (0.05) -0.48 (0.00) -0.26 (0.00) 0.25 (0.46) 0.01 0.00
UNEM -0.29 (0.00) 0.72 (0.00) -0.30 (0.00) 0.70 (0.00) 1.03 (0.00) 0.02 0.00
tb3m -0.26 (0.00) 0.56 (0.00) -0.24 (0.00) 0.53 (0.00) 0.79 (0.00) 0.38 0.00
tn10y -0.35 (0.00) -0.11 (0.00) -0.34 (0.00) -0.12 (0.00) -0.01 (0.95) 0.00 0.00
AAA -0.37 (0.00) -0.18 (0.00) -0.38 (0.00) -0.20 (0.00) -0.03 (0.87) 0.08 0.00

Note: Columns 1-5 of this table show the coefficient estimates (with p-values in paren-
theses) from the regression of forecast errors on forecast revisions. See the note to
Table 1 for the description of the CCEMG, MG, CCEP, POOL, and AGG estima-
tors. The last two columns report the p-values from testing the null hypothesis that
slopes are homogeneous (SL) and the null that there is no cross-sectional dependence
in the error term (CD). Data source: Philadelphia Fed Survey of Professional Fore-
casters (SPF) forecasts for nominal GDP (NGDP), real GDP (RGDP), GDP price
index (PGDP), industrial production (INDP), housing start (HOUS), unemployment
(UNEM), consumer price index (CPI), real consumption (RCON), real nonresidential
investment (RNRE), real residential investment (RRES), real federal government con-
sumption (RFGC), real state and local government consumption (RGSL), three-month
Treasury rate (tb3m), ten-year Treasury rate (tn10y) and AAA corporate bond rate
(AAA).

Considering consensus forecasts first, the slope coefficients from the
AGG estimator are positive for all 6 variables in the first subsample and
statistically significant at the 10 percent level for 4 of them. In the second
subsample, the AGG estimator is positive for 12 variables, with 7 of them
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being statistically significant, and negative, albeit insignificant, for 3 vari-
ables. These potentially biased results suggest that consensus forecasts of
macroeconomic variables underreact to new information, consistent with
CG (2015)’s and BGMS (2020)’s findings.

For individual forecasts, the results from the MG and POOL estima-
tors are mixed. For the first subsample, both estimators give positive
coefficients, suggesting underreaction to news. For the second subsample,
however, these two estimators yield negative and statistically significant
slope coefficients for 6 and 7 variables, respectively. An important caveat
is in order: these estimates are most likely biased since both MG and
POOL estimators ignore the presence of cross-sectional correlation, as
indicated by the CD test.

In contrast, the CCEMG estimator that allows for slope heterogene-
ity and cross-sectional correlation gives consistently negative slope coef-
ficients, statistically significant at the 1 percent level for all variables in
both subsamples. The CCEP estimator, by assuming slope homogeneity,
yields nearly identical results. The augmented information rigidity test
suggests that individual professional forecasters overreact to news in their
macroeconomic expectations.

One potential concern is that our empirical results might be dominated
by the missing values in the SPF dataset. To address this concern, we have
performed additional simulations where a proportion p of both dependent
and independent variables are missing at random, with p ranging from
10% to 80%. Table C.5 reports the results for the bias, RMSE, and
size for the homogeneous slope case. Missing values have a negligible
effect on our CCEMG and CCEP estimators; thus, our main empirical
finding of overreaction at the individual forecaster level still holds. As
the percentage of missing data increases, the bias and RMSE for MG and
POOL estimators get slightly larger, while the AGG estimator becomes
marginally less biased.
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5 Conclusion

This article studies the problem of regressing forecast errors on forecast
revisions at both individual and aggregate levels. The approach of “av-
erage then estimate” using consensus forecasts will be unbiased when the
underlying error terms are cross-sectionally independent or when fore-
cast revisions are cross-sectionally independent. In more general cases
where forecasters have access to noisy public information, however, this
approach exhibits large biases. By contrast, the approach of “estimate
then average” using individual forecasts will be unbiased in the absence of
cross-sectional correlation in forecast errors or forecast revisions. Apart
from these conditions, bias and size distortions can arise.

In order to remove potential biases one can utilize common correlated
effects estimators. In particular, the common correlated effects pooled
estimator is effective when the slope is homogeneous. If the slope is het-
erogeneous, the common correlated effects mean group estimator is rec-
ommended; this can also be used in the case of a homogeneous slope,
but is slightly less efficient than the pooled estimator. Because such de-
cisions about which estimator to use are contingent on knowing the slope
heterogeneity and the cross-sectional dependence in the error term, we
recommend checking these two conditions in practice.

In testing for rationality in the U.S. Survey of Professional Forecast-
ers dataset, the approach of “average then estimate” provides positive,
potentially biased, estimates of slope coefficients, implying that consen-
sus forecasts underreact to new information relative to full-information
rational expectations. The approach of “estimate then average” using in-
dividual forecasts gives a mixture of positive and negative estimates. In
contrast, the common correlated effects estimators, including both mean
group and pooled, always yield negative slope estimates and indicate that
professional forecasters on average overreact to news. This discrepancy in
results can be explained through the aforementioned biases to which the
simple aggregation or pooled estimators are subject. Finally, our results
that individual forecasts overreact to news but consensus forecasts might
underreact suggest that insights based on individual behavior do not nec-
essarily carry over to consensus forecasts. The “estimate then average”
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and “pool” estimators of BGMS (2020) would be a valid strategy in testing
an information frictions hypothesis only by accounting for cross-sectional
and time series correlations in a panel data setting. The “average then
estimate” approach needs to be generalized to allow for common noise in
public information, and we leave it for future research.
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Appendix A Asymptotic Bias Derivations

Here we derive asymptotic bias expressions for the AGG, MG, and POOL
estimators conditional on the γi, τi, and θi being known. The derivations
only use the Law of Large Numbers, and we let P−→ denote convergence in
probability. We also use ≈ to denote expressions that differ by a sequence
tending to zero in probability.

Beginning with AGG, note that by regressing y·t on x·t and a constant,
we can remove constant effects asymptotically, obtaining

bAGG ≈
∑
t

(
β x·t +∑N

i=1 γi ft + ξ·t
)
x·t∑

t x
2
·t

= β +
∑N
i=1 γi

∑
t ftx·t +∑

t ξ·tx·t∑
t x

2
·t

.

Next, x·t and ξ·t are uncorrelated with each other, and ε·t is uncorrelated
with ft; therefore as sample size T tends to infinity

bAGG
P−→ β +

∑N
i=1 γi

∑N
i=1 τi σ

2
f(∑N

i=1 τi
)2
σ2
f + σ2

·

,

since ∑t f
2
t

P−→ σ2
f and ∑t ε·t

P−→ σ2
· .

For the MG estimator, the derivation for the ith slope parameter is
similar to the aggregated case. Once the panel mean has been accounted
for,

bi ≈
∑
t (β xit + γi ft + ξit)xit∑

t x
2
it

= β + γi
∑
t ftxit +∑

t ξitxit∑
t x

2
it

for each 1 ≤ i ≤ N . For large sample size T we have

bi
P−→ β +

γiτi σ
2
f

τ 2
i σ

2
f + σ2

i

,

and now the asymptotic bias expression follows from averaging over the
panels, using (9).
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For the POOL estimator we ignore the panel structure and remove
the overall mean; for the dependent variable this is (NT )−1∑

i,t yit ≈
N−1∑N

i=1 αi for large T . Since the independent variables have mean zero,
asymptotically we can ignore the effect of de-meaning them, and hence

bPOOL ≈
∑
i,t

(
αi −N−1∑N

j=1 αj + β xit + γi ft + ξit
)
xit∑

i,t x
2
it

= β +
∑
i

(
αi −N−1∑N

j=1 αj
) ∑

t xit +∑
i,t γi ftxit +∑

i,t ξitxit∑
t x

2
·t

.

Now T−1∑
t xit

P−→ 0 for each i, and we see that

bPOOL
P−→ β +

∑N
i=1 γiτi σ

2
f∑N

i=1 τ
2
i σ

2
f +∑N

i=1 σ
2
i

.
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Appendix B AGG Estimator under Coibion
and Gorodnichenko (2015, CG
hereafter)’s Framework

We now make an application of the AGG results to the framework of CG
(2015), preserving the notation used in their paper (which conflicts some-
what with symbols we have used above). In their state space framework,
a public signal {πt} is observed by agent i with both public and private
noise {et} and {ωit}. The signal is an autoregressive process:

πt = ρ πt−1 + νt,

with −1 < ρ < 1 and {νt} an i.i.d. Gaussian sequence with mean zero
and variance Σν . The observed process for agent i is

yi,t = πt + et + ωit,

where {et} is i.i.d. Gaussian with mean zero and variance Σe, and for each
i, {ωit} is i.i.d. Gaussian with mean zero and common variance Σω. All
the latent processes are independent of each other.

We use a common notation for conditional expectations given past
values of the observed process {yi,t}, viz. πt|t(i) for the projection of the
signal onto present and past values of {yi,t}. Similarly, a forecast of the
signal is denoted πt|t−1(i). A further averaging over the forecasters is de-
noted by πt|t and πt|t−1, and this operation can be viewed as computing an
expectation conditional on {πt} and {et}, thereby eradicating the presence
of any ωi,t. To begin,

πt|t(i) = πt|t−1(i) +G
(
yt − yt|t−1(i)

)
expresses the classic formula for conditional expectations, where the infor-
mation set on the left hand side includes At−1 = {. . . , yi,t−2, yi,t−1} as well
as yi,t, and the right hand side separates the two contributions. Hence G
is just the covariance between πt and the new information yi,t − yt|t−1(i),
normalized by the variance of the latter – this quantity G is called the
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Kalman gain.
Next, because et and ωi,t are independent of the old information At−1,

we find yt|t−1(i) = πt|t−1(i), and it follows that

πt|t(i) = (1−G) πt|t−1(i) +Gyt.

If we average across the forecasters, we obtain

πt|t = (1−G) πt|t−1 +G (πt + et).

We need a few other expressions. Considering h-step ahead forecasting
(h ≥ 1), we can recursively expand the autoregressive signal to obtain

πt+h = ρh πt + ρh−1 νt+1 + . . .+ ρ νt+h−1 + νt+h.

Gathering all but the first term on the right hand side, CG (2015) defines
νt+h,t = ∑h−1

k=0 ρ
kνt+h−k. If we now project onto present and past data, we

obtain
πt+h|t(i) = ρh πt|t(i),

from which πt+h|t = ρh πt|t. Hence,

πt+h − πt+h|t = νt+h,t + ρh
(
πt − πt|t

)
.

Moreover, using previous calculations we obtain

πt+h|t − (1−G) πt+h|t−1 = ρh πt|t − (1−G) ρh πt|t−1

= ρhG (πt + et).

Using these expressions,

G
(
πt+h − πt+h|t

)
= Gνt+h,t +Gρh

(
πt − πt|t

)
= Gνt+h,t − ρhGet + πt+h|t − (1−G) πt+h|t−1 −Gπt+h|t
= G (νt+h,t − ρh et) + (1−G)

(
πt+h|t − πt+h|t−1

)
.
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Dividing through by G now yields

(
πt+h − πt+h|t

)
= 1−G

G

(
πt+h|t − πt+h|t−1

)
+ (νt+h,t − ρh et),

which resembles a regression of h-step ahead average forecast errors on
h-step ahead average forecast revisions. (Note that in Appendix A of CG
(2015), the factor ρh that multiplies et has been omitted.) We can now
match this regression equation to the aggregation framework (7) of our pa-
per. For the dependent variable (i.e. average forecast error), our dynamic
factor ft corresponds to the public noise et, and

∑N
i=1 γi = −ρh, whereas

ξ·t corresponds to νt+h,t. Also, ∑N
i=1 αi = 0 and β = (1− G)/G. Turning

to the covariate (i.e. average forecast revision), we see that the same dy-
namic factor ft is present, and

∑N
i=1 τi = ρhG, whereas ε·t corresponds to

the remaining independent portion

ρh (1−G) πt|t−1 + ρhGπt − πt+h|t−1.

Now we can plug into the formulas for the asymptotic bias of the AGG
estimator, and find that the numerator equals −ρ2hGΣe. (In CG (2015),
the bias expression involves ρh instead of ρ2h, because of their typo for
the coefficient of et mentioned above.) The denominator is the variance
of the covariate, and is always positive; since ρ2h is non-negative for any
−1 < ρ < 1 and any h ≥ 1, we conclude that the estimator of β is
downward biased.
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Appendix C Additional Simulation Results

The simulations for the case of heterogeneous slope are based on 5, 000
Monte Carlo replications. The results are summarized in Tables C.1, C.2,
C.3, and C.4.

We also study the impact of missing values on our results. Here we
focus on DGP 3 with N = 50 and T = 100, examining the homogeneous
slope case, and reporting Bias, RMSE, and Size in Table C.5.
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Table C.1: Bias and RMSE of estimators with heterogeneous slope: N =
50, T = 100

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Bias -0.0000 -0.0000 -0.0000 -0.0000 -0.0011 -0.0000
RMSE 0.0111 0.0130 0.0112 0.0130 0.3017 0.0111

DGP 2 Bias 0.0000 0.3854 -0.0001 0.3916 1.8616 -0.0000
RMSE 0.0353 0.3918 0.0354 0.3983 1.8698 0.0353

DGP 3 Bias 0.0008 0.4519 0.0009 0.4567 0.9838 0.0008
RMSE 0.0350 0.4562 0.0352 0.4608 0.9886 0.0350

DGP 4 Bias 0.0002 0.0002 0.0001 0.0002 0.0053 0.0002
RMSE 0.0343 0.0357 0.0348 0.0360 0.4925 0.0343

DGP 5 Bias -0.0005 0.1930 -0.0006 0.1960 0.9304 -0.0005
RMSE 0.0347 0.1984 0.0347 0.2014 0.9348 0.0347

DGP 6 Bias -0.0000 0.2262 0.0001 0.2283 0.4922 -0.0001
RMSE 0.0349 0.2299 0.0351 0.2321 0.4952 0.0350

DGP 7 Bias -0.0001 -0.0001 -0.0003 -0.0003 0.0042 -0.0000
RMSE 0.0360 0.0359 0.0359 0.0358 0.1439 0.0350

DGP 8 Bias 0.0007 0.0007 0.0007 0.0009 0.0016 0.0007
RMSE 0.0347 0.0343 0.0346 0.0356 0.0475 0.0345

DGP 9 Bias -0.0007 -0.0005 -0.0005 -0.0005 -0.0002 -0.0006
RMSE 0.035 0.0329 0.0352 0.0360 0.0361 0.0350

DGP 10 Bias -0.0008 -0.0008 -0.0006 -0.0007 -0.0000 -0.0007
RMSE 0.0357 0.0355 0.0360 0.0358 0.1437 0.0354

DGP 11 Bias -0.0008 -0.0009 -0.0009 -0.0007 -0.0004 -0.0009
RMSE 0.0347 0.0333 0.0349 0.0340 0.0468 0.0347

DGP 12 Bias -0.0017 -0.0015 -0.0018 -0.0019 -0.0016 -0.0017
RMSE 0.0348 0.0315 0.0349 0.0336 0.0358 0.0348

Note: This table shows the bias and root mean squared error (RMSE) based on 5, 000
replications for the heterogeneous case. CCEMG is the common correlated effects mean
group estimator defined in equation (9), INF is the infeasible CCEMG estimator by
assuming that the common factor is known, and MG is the mean group estimator by
first running separate regressions for each individual by ignoring the common factor,
and then taking the mean of the coefficients obtained from the first step. CCEP is
the common correlated effects pooled estimator defined in equation (10). POOL is the
pooled OLS estimator without controlling for the panel structure and cross-sectional
correlation. AGG is the OLS estimator from the aggregated time series regression as
defined in equation (12).
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Table C.2: Size and power of estimators with heterogeneous slope: N =
50, T = 100

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Size 0.0606 0.0576 0.0610 0.0530 0.1344 0.0614
Power 0.3064 0.2348 0.3110 0.2376 0.1326 0.3086

DGP 2 Size 0.0600 1.0000 0.0598 1.0000 1.0000 0.0598
Power 0.3162 1.0000 0.3182 1.0000 1.0000 0.3146

DGP 3 Size 0.0614 1.0000 0.0620 1.0000 1.0000 0.0618
Power 0.3192 1.0000 0.3240 1.0000 1.0000 0.3226

DGP 4 Size 0.0532 0.0504 0.0548 0.0530 0.1342 0.0530
Power 0.3296 0.2986 0.3246 0.2964 0.1502 0.3290

DGP 5 Size 0.0572 0.9974 0.0590 0.9970 1.0000 0.0572
Power 0.3100 1.0000 0.3108 1.0000 1.0000 0.3084

DGP 6 Size 0.0642 1.0000 0.0614 1.0000 1.0000 0.0630
Power 0.3218 1.0000 0.3162 1.0000 1.0000 0.3218

DGP 7 Size 0.0596 0.0582 0.0596 0.0588 0.1650 0.0598
Power 0.3036 0.2982 0.3070 0.2968 0.1932 0.3152

DGP 8 Size 0.0592 0.0230 0.0584 0.0224 0.2508 0.0558
Power 0.3212 0.1848 0.3138 0.1784 0.4942 0.3222

DGP 9 Size 0.064 0.0146 0.0574 0.0184 0.4436 0.0632
Power 0.3154 0.1518 0.3198 0.1518 0.7474 0.3124

DGP 10 Size 0.0682 0.0596 0.0686 0.0622 0.1644 0.0686
Power 0.3178 0.3050 0.3122 0.3024 0.1790 0.3204

DGP 11 Size 0.0594 0.0432 0.0642 0.0458 0.2464 0.0574
Power 0.3206 0.2896 0.3200 0.2888 0.4810 0.3180

DGP 12 Size 0.0592 0.0422 0.0568 0.0420 0.4398 0.0564
Power 0.3114 0.3038 0.3144 0.2776 0.7484 0.3146

Note: This table reports the proportion of rejections of the null hypothesis that β = 0,
when β = 0 (for size of various estimators) or β = 0.05 (for power of various estimators),
based on 5, 000 replications for the heterogeneous case. For the description of different
estimators, see the note to Table C.1.
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Table C.3: Bias and RMSE of estimators with heterogeneous slope: N =
100, T = 50

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Bias 0.0000 0.0010 -0.0000 0.0008 0.0792 0.0000
RMSE 0.0287 0.0363 0.0283 0.0351 1.8911 0.0287

DGP 2 Bias -0.0003 0.3969 -0.0003 0.3961 1.9299 -0.0003
RMSE 0.0286 0.4061 0.0282 0.4057 1.9349 0.0288

DGP 3 Bias 0.0003 0.4577 0.0003 0.4557 0.9914 0.0004
RMSE 0.0285 0.4629 0.0286 0.4602 0.9940 0.0286

DGP 4 Bias 0.0004 0.0008 0.0005 0.0009 0.0346 0.0003
RMSE 0.0286 0.0306 0.0284 0.0302 0.9572 0.0287

DGP 5 Bias -0.0005 0.1978 -0.0004 0.1974 0.9635 -0.0005
RMSE 0.0288 0.2034 0.0285 0.2032 0.9665 0.0289

DGP 6 Bias 0.0003 0.2292 0.0003 0.2280 0.4963 0.0002
RMSE 0.0283 0.2326 0.0281 0.2312 0.4981 0.0285

DGP 7 Bias 0.0004 0.0004 0.0004 0.0004 0.0015 0.0003
RMSE 0.0299 0.0296 0.0293 0.0292 0.1959 0.0287

DGP 8 Bias -0.0005 -0.0003 -0.0005 -0.0004 0.0003 -0.0005
RMSE 0.0287 0.0280 0.0284 0.0284 0.0418 0.0287

DGP 9 Bias -0.0002 -0.0000 -0.0003 -0.0003 -0.0000 -0.0001
RMSE 0.0288 0.0255 0.0286 0.0274 0.0287 0.0289

DGP 10 Bias -0.0004 -0.0004 -0.0004 -0.0004 -0.0023 -0.0004
RMSE 0.0290 0.0287 0.0285 0.0284 0.1940 0.0288

DGP 11 Bias 0.0005 0.0006 0.0005 0.0005 0.0014 0.0006
RMSE 0.0288 0.0268 0.0286 0.0271 0.0428 0.0289

DGP 12 Bias 0.0001 0.0001 -0.0001 0.0002 0.0005 0.0001
RMSE 0.0289 0.0249 0.0286 0.0261 0.0292 0.0290

Note: This table shows the bias and root mean squared error (RMSE) based on 5, 000
replications for the heterogeneous case. For the description of different estimators, see
the note to Table C.1.
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Table C.4: Size and power of estimators with heterogeneous slope: N =
100, T = 50

Measure CCEMG MG CCEP POOL AGG INF

DGP 1 Size 0.0546 0.0534 0.0558 0.0530 0.1280 0.0570
Power 0.4222 0.3004 0.4302 0.3086 0.1252 0.4212

DGP 2 Size 0.0546 1.0000 0.0542 1.0000 1.0000 0.0542
Power 0.4208 1.0000 0.4354 1.0000 1.0000 0.4154

DGP 3 Size 0.0548 1.0000 0.0590 1.0000 1.0000 0.0542
Power 0.4248 1.0000 0.4286 1.0000 1.0000 0.4200

DGP 4 Size 0.0532 0.0550 0.0532 0.0528 0.1314 0.0534
Power 0.4260 0.3842 0.4342 0.3888 0.1318 0.4240

DGP 5 Size 0.0518 0.9996 0.0516 0.9992 1.0000 0.0530
Power 0.4232 1.0000 0.4338 1.0000 1.0000 0.4234

DGP 6 Size 0.0510 1.0000 0.0548 1.0000 1.0000 0.0510
Power 0.4308 1.0000 0.4422 1.0000 1.0000 0.4320

DGP 7 Size 0.0522 0.0538 0.0564 0.0554 0.1418 0.0530
Power 0.3846 0.3842 0.4026 0.3976 0.1600 0.4168

DGP 8 Size 0.0574 0.0234 0.0530 0.0250 0.1930 0.0568
Power 0.4110 0.2910 0.4256 0.2898 0.4686 0.4088

DGP 9 Size 0.0544 0.0138 0.0616 0.0166 0.3314 0.0574
Power 0.4284 0.2990 0.4306 0.2772 0.7882 0.4250

DGP 10 Size 0.0558 0.0538 0.0556 0.0510 0.1402 0.0582
Power 0.4118 0.4080 0.4266 0.4150 0.1552 0.4250

DGP 11 Size 0.0550 0.0396 0.0536 0.0422 0.1988 0.0540
Power 0.4248 0.4278 0.4322 0.4184 0.4658 0.4198

DGP 12 Size 0.0530 0.0416 0.0536 0.0412 0.3418 0.0522
Power 0.4188 0.4738 0.4330 0.4458 0.7798 0.4196

Note: This table reports the proportion of rejections of the null hypothesis that β = 0,
when β = 0 (for size of various estimators) or β = 0.05 (for power of various estimators),
based on 5, 000 replications for the heterogeneous case. For the description of different
estimators, see the note to Table C.1.
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Table C.5: Bias, RMSE, and Size of estimators with homogeneous slope:
N = 50, T = 100

Measure CCEMG MG CCEP POOL AGG INF

p = .10
Bias -0.0002 0.4835 -0.0001 0.4816 0.9824 -0.0001

RMSE 0.0193 0.4868 0.0186 0.4845 0.9866 0.0193
Size 0.0540 1.0000 0.0556 1.0000 1.0000 0.0536

p = .20
Bias -0.0002 0.5161 -0.0002 0.5093 0.9774 -0.0001

RMSE 0.0179 0.5193 0.0172 0.5121 0.9817 0.0180
Size 0.0494 1.0000 0.0464 1.0000 1.0000 0.0516

p = .30
Bias -0.0003 0.5527 -0.0002 0.5414 0.9728 -0.0004

RMSE 0.0175 0.5557 0.0168 0.5442 0.9769 0.0175
Size 0.0512 1.0000 0.0522 1.0000 1.0000 0.0506

p = .40
Bias -0.0002 0.5890 -0.0002 0.5749 0.9628 -0.0002

RMSE 0.0167 0.5919 0.0159 0.5776 0.9670 0.0168
Size 0.0506 1.0000 0.0472 1.0000 1.0000 0.0486

p = .50
Bias -0.0002 0.6288 -0.0002 0.6131 0.9513 -0.0002

RMSE 0.0165 0.6319 0.0158 0.6160 0.9557 0.0166
Size 0.0554 1.0000 0.0562 1.0000 1.0000 0.0552

p = .60
Bias -0.0001 0.6665 -0.0002 0.6514 0.9332 -0.0002

RMSE 0.0165 0.6696 0.0157 0.6544 0.9376 0.0165
Size 0.0572 1.0000 0.0584 1.0000 1.0000 0.0590

p = .70
Bias -0.0002 0.7012 -0.0004 0.6888 0.9018 -0.0002

RMSE 0.0163 0.7045 0.0154 0.6920 0.9063 0.0164
Size 0.0616 1.0000 0.0626 1.0000 1.0000 0.0604

p = .80
Bias -0.0003 0.7153 -0.0002 0.7075 0.8403 -0.0003

RMSE 0.0170 0.7196 0.0154 0.7117 0.8455 0.0171
Size 0.0592 1.0000 0.0630 1.0000 1.0000 0.0598

Note: This table shows the bias, root mean squared error (RMSE), and size, based
on 5, 000 replications for the homogeneous case, where a proportion p of both the
dependent and independent variables are missing at random. CCEMG is the common
correlated effects mean group estimator defined in equation (9), INF is the infeasible
CCEMG estimator by assuming that the common factor is known, and MG is the mean
group estimator by first running separate regressions for each individual by ignoring the
common factor, and then taking the mean of the coefficients obtained from the first
step. CCEP is the common correlated effects pooled estimator defined in equation
(10). POOL is the pooled OLS estimator without controlling for the panel structure
and cross-sectional correlation. AGG is the OLS estimator from the aggregated time
series regression as defined in equation (12).
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